=7v^3-10v^2+9v^4

Simple and best practice solution for =7v^3-10v^2+9v^4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for =7v^3-10v^2+9v^4 equation:


Simplifying
0 = 7v3 + -10v2 + 9v4

Reorder the terms:
0 = -10v2 + 7v3 + 9v4

Solving
0 = -10v2 + 7v3 + 9v4

Solving for variable 'v'.
Remove the zero:
10v2 + -7v3 + -9v4 = -10v2 + 7v3 + 9v4 + 10v2 + -7v3 + -9v4

Reorder the terms:
10v2 + -7v3 + -9v4 = -10v2 + 10v2 + 7v3 + -7v3 + 9v4 + -9v4

Combine like terms: -10v2 + 10v2 = 0
10v2 + -7v3 + -9v4 = 0 + 7v3 + -7v3 + 9v4 + -9v4
10v2 + -7v3 + -9v4 = 7v3 + -7v3 + 9v4 + -9v4

Combine like terms: 7v3 + -7v3 = 0
10v2 + -7v3 + -9v4 = 0 + 9v4 + -9v4
10v2 + -7v3 + -9v4 = 9v4 + -9v4

Combine like terms: 9v4 + -9v4 = 0
10v2 + -7v3 + -9v4 = 0

Factor out the Greatest Common Factor (GCF), 'v2'.
v2(10 + -7v + -9v2) = 0

Subproblem 1

Set the factor 'v2' equal to zero and attempt to solve: Simplifying v2 = 0 Solving v2 = 0 Move all terms containing v to the left, all other terms to the right. Simplifying v2 = 0 Take the square root of each side: v = {0}

Subproblem 2

Set the factor '(10 + -7v + -9v2)' equal to zero and attempt to solve: Simplifying 10 + -7v + -9v2 = 0 Solving 10 + -7v + -9v2 = 0 Begin completing the square. Divide all terms by -9 the coefficient of the squared term: Divide each side by '-9'. -1.111111111 + 0.7777777778v + v2 = 0 Move the constant term to the right: Add '1.111111111' to each side of the equation. -1.111111111 + 0.7777777778v + 1.111111111 + v2 = 0 + 1.111111111 Reorder the terms: -1.111111111 + 1.111111111 + 0.7777777778v + v2 = 0 + 1.111111111 Combine like terms: -1.111111111 + 1.111111111 = 0.000000000 0.000000000 + 0.7777777778v + v2 = 0 + 1.111111111 0.7777777778v + v2 = 0 + 1.111111111 Combine like terms: 0 + 1.111111111 = 1.111111111 0.7777777778v + v2 = 1.111111111 The v term is 0.7777777778v. Take half its coefficient (0.3888888889). Square it (0.1512345679) and add it to both sides. Add '0.1512345679' to each side of the equation. 0.7777777778v + 0.1512345679 + v2 = 1.111111111 + 0.1512345679 Reorder the terms: 0.1512345679 + 0.7777777778v + v2 = 1.111111111 + 0.1512345679 Combine like terms: 1.111111111 + 0.1512345679 = 1.2623456789 0.1512345679 + 0.7777777778v + v2 = 1.2623456789 Factor a perfect square on the left side: (v + 0.3888888889)(v + 0.3888888889) = 1.2623456789 Calculate the square root of the right side: 1.123541579 Break this problem into two subproblems by setting (v + 0.3888888889) equal to 1.123541579 and -1.123541579.

Subproblem 1

v + 0.3888888889 = 1.123541579 Simplifying v + 0.3888888889 = 1.123541579 Reorder the terms: 0.3888888889 + v = 1.123541579 Solving 0.3888888889 + v = 1.123541579 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-0.3888888889' to each side of the equation. 0.3888888889 + -0.3888888889 + v = 1.123541579 + -0.3888888889 Combine like terms: 0.3888888889 + -0.3888888889 = 0.0000000000 0.0000000000 + v = 1.123541579 + -0.3888888889 v = 1.123541579 + -0.3888888889 Combine like terms: 1.123541579 + -0.3888888889 = 0.7346526901 v = 0.7346526901 Simplifying v = 0.7346526901

Subproblem 2

v + 0.3888888889 = -1.123541579 Simplifying v + 0.3888888889 = -1.123541579 Reorder the terms: 0.3888888889 + v = -1.123541579 Solving 0.3888888889 + v = -1.123541579 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-0.3888888889' to each side of the equation. 0.3888888889 + -0.3888888889 + v = -1.123541579 + -0.3888888889 Combine like terms: 0.3888888889 + -0.3888888889 = 0.0000000000 0.0000000000 + v = -1.123541579 + -0.3888888889 v = -1.123541579 + -0.3888888889 Combine like terms: -1.123541579 + -0.3888888889 = -1.5124304679 v = -1.5124304679 Simplifying v = -1.5124304679

Solution

The solution to the problem is based on the solutions from the subproblems. v = {0.7346526901, -1.5124304679}

Solution

v = {0, 0.7346526901, -1.5124304679}

See similar equations:

| ln(x)+ln(x+2)=ln(x+8) | | (1/2n)+(1/2n)+n=180 | | z^5-1=0 | | (4x+7)(3x-2)= | | (3g-5)(3g+5)= | | lnx+ln(x+2)=ln(x+8) | | C=5/9(68-32) | | (q-1)(q-1)= | | (4s+5)(7s^2-4s+3)= | | 2y^2-5y+3y^2-100-120y+36y^2=8 | | 2a+b=2.60 | | (5w-6)(2w+7)= | | z=30+y | | 4.9t^2+225t-620=0 | | 2y^2-xy-4x^2=8 | | 225t^2+4.9t-620=0 | | -6x^2+15x+36=0 | | x^2+14x-35=0 | | A=b*h/2 | | 2t^2-2k^2+t-k= | | x^3+3x^2-77x= | | v^3+5x+6=0 | | (p-3)(2p+1)+6=0 | | 10y-5x=5 | | -2+-2+-2= | | 5x+3-(3x-2)=10 | | X^2+8x+10=-7 | | 12x-5y=4 | | ln(x-6)+4=ln(x+3) | | 12-13-5=0 | | 9.16=9 | | 2x+12=-65-9 |

Equations solver categories